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Contingency Software in Autonomous Systems
Problem

PROBLEM STATEMENT

Autonomous vehicles currently have a limited capacity 
to diagnose and mitigate failures. 

We need to be able to handle a broader range of 
contingencies (anomalous situations).

A contingency is an event or condition (as an emergency) that may but is 
not certain to occur [Merriam-Webster]
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1. Speed up diagnosis and mitigation of anomalous situations.
2. Automatically handle contingencies, not just failures.
3. Enable projects to select a degree of autonomy consistent with 

their needs and to incrementally introduce more autonomy.
4. Augment on-board fault protection with verified contingency 

scripts

Contingency Software in Autonomous Systems
Goals
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Overview of this year’s accomplishments (1)

Contingency Software in Autonomous Systems

• Completed Autonomous Rotorcraft Project (UAV) case study 
– Documented process & results (1 published & 2 submitted 

papers) 
– Performed hardware-in-loop testing of diagnostic tree
– Project applied results, modifying camera controller to enable 

autonomous switching between color and video cameras
• Modeled MER Critical Pointing software to be reused on MSL 

– Called if commandability lost & before trajectory-correction 
maneuvers 

– Auto-generated diagnostic tree from TEAMS model of what 
is known when a “quit-failed” signal occurs

– Supplemented available project documentation before reuse
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Overview of this year’s accomplishments (2)

Contingency Software in Autonomous Systems

• New case study
– ADAPT emulates a typical spacecraft power system with 

redundant power buses, a solar panel, and battery storage
– The approach for developing contingencies resulted in critical 

function identification and preliminary identification of required 
contingency plans  

• Described work to date at the Mini-SAS at JPL
• Data availability potentially high (needs packaging, sanitizing of 

models)
• Technology Readiness Level:

– FY05: 3 (“Experimental demonstration of critical function &/or   
proof of concept”)

– FY06: 4 (“Validation in a lab environment”) on grounded 
rotorcraft 
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What is a contingency?

• Contingencies are obstacles to the fulfillment of a system’s high-
level requirements that can arise during real-time operations
– Failures: camera fails due to hardware or software problem
– Operational situations of concern: lens cap left on means that all 

images are black, so can’t land unassisted 
– Environmental situations of concern:  strong crosswind interferes 

with imaging, thus with finding landing site
• Contingency-handling involves requirements for detecting, 

identifying and responding to contingencies.
• Contingency handling includes, but extends, traditional fault 

protection

Contingency Software in Autonomous Systems 
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• Something previously not done automatically is now done by the 
software
– Previously done manually, or
– Previously could not be done

• Example of incremental autonomy:  
– Collision avoidance (not hitting buildings)
1. Remote control by pilot steering from ground
2. Path calculated on ground, loaded into system, path-plan 

executed in flight
3. Path calculated in flight based on real-time imaging

• Autonomy allows system to detect and respond to a broader class 
of anomalies in many more ways

Contingency Software in Autonomous Systems 
Autonomy
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• The rotorcraft software is safety-critical: 
– Requires collision-avoidance 
– Requires autonomous take-off & landing in populated  areas
– Used for critical missions:  finding lost hikers, downed pilots;

detecting highway accidents; imaging (early warning) forest fires

Contingency Software in Autonomous Systems
Safety-Critical
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1. Identify contingencies that risk mission-critical functions in a power 
system testbed (using S-FTA, S-FMECA, Obstacle Analysis)

2. Model contingencies & autonomous recovery actions using TEAMS 
(Testability And Engineering Maintenance System, QSI)

3. Analyze contingencies: TEAMS produces diagnostic tree of checks 
needed to detect & isolate contingency, identifies missing checks and 
recovery actions

4. Code contingencies’ diagnosis & recovery behavior in the project’s 
planner scripting language (auto-translation from TEAM’s XML 
output)

5. Verify contingency scripts with hardware-in-loop simulation

Using the above steps:
• Verify contingency plans used by NASA projects
• Investigate issues in coverage of contingencies 
• Test results on power system testbed

Contingency Software in Autonomous Systems
Approach
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Contingency Software in Autonomous Systems
Contingency analysis

• Used Bi-Directional Safety Analysis to find contingencies
– Forward analysis from potential failures to their effects (Software 

Failure Modes, Effects & Criticality Analysis)
– Backward analysis from failures to contributing causes (Software

Fault Tree Analysis)
• Guided thinking about possible ways to handle contingencies:

– Use “Mitigation” column in SFMECA
– Remove leaf nodes from SFTA graphs 
– Use obstacle resolution patterns [van Lamsweerde & Letier, 2000]

• TEAMS produces a diagnostic tree of checks needed to detect & isolate 
contingencies; identifies missing checks and recovery action
– “Testability Engineering and Maintenance System”
– Modeling & analysis toolset
– Won NASA Space Act Award
– Used successfully on 2nd generation RLV IVHM risk reduction 

program
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</LABEL>
<SYMPTOM />

- <NODE LABEL="1"
TYPE="TEST"
ID="T.small_stereo_0.1.2.
4.0" PASS="YES"
FAIL="NO">
- <PARA>
- <![CDATA[

Contingency Software in Autonomous Systems
Approach

1. TEAMS Model

2. Diagnostic Tree 
auto-generated

3. XML auto-translated
to verify contingency
handling on platform
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Obstacle analysis approach

• KAOS framework for goal-oriented obstacle analysis [van 
Lamsweerde & Letier, 2000]
– Goal is a set of desired behaviors
– Obstacle is a set of undesirable behaviors that impede a 

goal
• Relevance to application:

– Contingencies are
• Obstacles to achieving goals, or
• Indications that goals are unrealizable with available 

agents
• Advantages

– Structured approach early-on (anticipatory planning)
– Supports more formal analysis, as needed

Contingency Software in Autonomous Systems
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Identifying contingencies & contingency-handling software actions

• Step 1. Identify the goals
• Step 2. Identify the agents 
• Step 3. Identify the obstacles to the goals (these are the 

contingencies)
• Step 4. Identify alternative resolutions to the obstacles (the 

contingency-handling that can be done autonomously)
• Step 5. Select a resolution among the alternatives

Contingency Software in Autonomous Systems
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• Requirements evolution
– Use goal & obstacle analysis to refine requirements in a developing 

system [Anton & Potts]
• Maintenance

– Focus on management of requirements changes [Bennett & 
Rajlich]

– Evaluate in terms of traceability or change-impact [Cleland-Huang]
• Dynamic monitoring

– Monitor operational systems for mismatch assumptions/ 
environment & perform remedial evolutions [Fickas & Feather] 

• Autonomous fault handling with AI planners [Brat et al., Chien et al.]
• Safety in autonomous systems [Fox & Das, ESA ESTEC]
• Vehicle health management [Patterson-Hine et al.]

Contingency Software in Autonomous Systems
Other related work
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Contingency Software in Autonomous Systems
Overview of perception system 

6 DOF

Perception is a critical function in systems 

requiring obstacle avoidance, threat detection, 

science missions and “opportunistic” discovery.



Contingency Software in Autonomous Systems
Perception instrumentation onboard rotorcraft
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• Cases in which the cameras are a critical system:
– Cameras assigned responsibility during nominal ops

• No line of sight -> Camera provides position info
– Cameras are backup when other subsystems fail

• Failed/degraded GPS -> Camera provides position info
• Failed/degraded ARP -> Camera provides landing-site data

– Images as mission objective (surveillance)
• Failure of cameras can jeopardize success

• Thanks to Matt Whalley, Autonomous Rotorcraft Project Manager, 
& to Rob Harris, Chad Frost, Doron Tal, Stacy Nelson, Anupa
Bajwa

Contingency Software in Autonomous Systems
Camera criticality
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What do we know when a “quit-failed”
signal occurs?

Contingency Software in Autonomous Systems
Critical pointing for Mars spacecraft
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•Autonomous, contingency response for critical scenarios such as 
commandability loss, & before critical trajectory-correction maneuvers
•Thanks to Tracy Neilson, MER/MSL

Contingency Software in Autonomous Systems
Critical pointing for Mars spacecraft
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Contingency Software in Autonomous Systems
Emulates a typical spacecraft power system

•Thanks to Scott Poll, ADAPT manager
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Contingency Software in Autonomous Systems
Preliminary identification of some required contingency plans



SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 22

Properties for each function, 
switch & test-point are entered
into the TEAMS tools

TEAMS builds a Dependency Matrix in which 
each row is a fault source (e.g., a camera that 
can fail) and each column is a test (e.g., 
whether we have a good Stereo image).
Here, we select the normal or contingency
scenario (camera OK or not) for the analysis.

Contingency Software in Autonomous Systems
Results  
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Executing the Contingency scenario, we check 
that the behavior is correct: left COLOR camera 
is available (no red slash) & being used; confirm 
that tests can isolate failure to which camera.

Most useful: the automatic Diagnostic Tree:
--Shows best sequence of checks

to detect & isolate 
--Shows indistinguishable failures    
(“ambiguity groups”)

</LABEL>
<SYMPTOM />

- <NODE LABEL="1"
TYPE="TEST"
ID="T.small_stereo_0.1.2.4.0
" PASS="YES" FAIL="NO">
- <PARA>
- <![CDATA[

Contingency Software in Autonomous Systems
Results  

--XML output option auto- translated into 
rotorcraft’s planning language (APEX) to simulate 
contingencies on the vehicle
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Contingency Software in Autonomous Systems
Potential applications

• Contingency management is essential to the robust
operation of complex systems such as spacecraft and 
Unpiloted Aerial Vehicles (UAVs)

• Automatic contingency handling allows a faster response to 
unsafe scenarios with reduced human intervention on low-
cost and extended missions

• Results, applied to the Autonomous Rotorcraft Project and 
Mars Science Lab, pave the way to more resilient 
autonomous systems
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Next Steps
Contingency Software in Autonomous Systems

Investigate and model with TEAMS key contingencies involved in safe 

software reconfiguration of power distribution systems to support 

autonomous operations

Demonstrate and verify a subset of the contingency responses we have 

developed on available platforms 

Support transfer to other NASA projects
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• Improved contingency handling needed to safely relinquish 
control of unpiloted vehicles to autonomous controllers

• More autonomous contingency handling needed to support 
extended mission operations

Relevance to NASA
Contingency Software in Autonomous Systems

ARC

ARC

JPL
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